
Unlocking the GPU 

for Real-Time Audio



“It's kind of fun to do the impossible” – Walt Disney



Next Gen Audio needs a new standard 

Streaming / broadcast
platforms

Interactive game audio

Collaborative 
Production

Spatial audio
AI/ML 

(Maxine, AI music, etc.)



GPUs offer virtually unlimited power & scalability 

to digital audio compared to CPUs, but the problems 

are as inherent as the possibilities



There are three major challenges for GPU Audio processing

Parallelism 
and Heterogeneity1 Multiple tracks 

and effects2 Data transfer between 
CPU and GPU3



Not only did we solve these issues, 
but the journey led to the discovery of truly 

next-gen features for audio production



Today we will

Tell the story about how 
we solved the problems that 
kept GPUs back for years

Share some of the 
possibilities and 
next-gen audio features 
of the tech stack

Officially launch 
our early access 
community and demos

Announce a few 
world's-first products

Demonstrate GPU audio 
in action



With the help of industry experts behind GPU Audio

Jonathan Rowden

• Independent 
Sound Designer / 
Composer / 
Saxophonist

• Partnership 
Development

Alexander Talashov

• Technology Architect

• Managing Partner

• CS & HPC Scientist

Vasiliy Sumatokhin

• Managing Partner

• Sound Engineer
for almost 21 years

Markus Steinberger

• Senior Researcher, 
Advisor

• MSc in Computer 
Engineering,

• PhD in Computer 
Science

Aleksandrs Prokopcuks

• Managing Partner

• CTO

• DSP Scientist



GPU Audio is helping developers to reimagine audio 

processing use cases on traditional IT platforms

Breaking away from the limits of typical audio software



GPU Audio: the world's first novel technology enabling

real-time audio DSP on GPUs

Real-Time high performance DSP

1ms latency, regardless of channel count 
or effect instance count

Powerful parallel processing, 
without added latency 

Instant results 

Network ability and scalability

Audio processing over Ethernet, 
wifi6 or 5-6g connections



AI/ML

Web3 experiences

Next Gen DAW and music production software

Spatial audio computing and simulation

Interoperable collaboration platforms 
like NVIDIA’s Omniverse 

GPU Audio bridges the gap between Pro Audio and Next Gen Tech Standards

Features of our solution open up a world of high-performance audio and production 
to emerging technologies



Bounce mode & rendering accelerated by GPU

Mixdowns for huge projects

We can still rely on all our techniques 
for parallelization, especially as processors only 
work on a small number of input samples in parallel

We can now transfer even larger amounts 
of data at once and we do not have the 1ms delay 
requirement - so this is even the easier case



Cloud-based scenario

GPU-based solution can be easily scaled in all scenarios

On-Premise or cloud deployment solutions based on IT-first architecture

Local node (EU)

Server

Local node

Access server – single entry point

Admin

On-premise scenario

Mixing 
Engineers

Sync

Editors Actors Dub station

EU production team Asia production team US production team

Local node (Asia) Local node (US)



GPU Audio speedup over CPU implementations 

Algorithms designed by GPU Audio achieve significant speedups over CPU processing in both real-time 
processing and rendering use cases, for both inherently parallel effects and traditionally sequential tasks

FIR – inherently parallel
IIR – Traditionally sequential

(but still some parallel designs could be applied)

1x

40x

2,2x

75x

CPU
real-time

GPU
real-time

CPU
rendering

GPU
rendering

Sp
pe

du
p

ov
er

 C
PU

 re
al

-t
im

e

1x
10x

3.5x

50x

CPU
real-time

GPU
real-time

CPU
rendering

GPU
rendering

Sp
pe

du
p

ov
er

 C
PU

 re
al

-t
im

e



Classic audio processing 
DSP algorithms have many 
strict data dependencies 

Reverb

Many classic approaches 
to parallelize tasks on GPU 
use multidimensional signals 

Single audio channel 
is one-dimensional signal 

Audio processing on GPU

Fundamental problems prevent successful commercial solutions

0

+1.0

-1.0

+0.5

-0.5

Am
pl

itu
de

Time

Raw audio signal

Am
pl

itu
de

 (R
M

S)

Spectrogram

Am
pl

itu
de

 (K
hz

)

Overdrive

SEND

RETURN

Delay

Distortion

ChorusEQ

WAHTuner



Example of easily parallelizable component: FIR

Definition

Finite impulse response filter 
or convolution due to the fact 
that all samples can be computed 
independently is easily parallelizable 

2

3

4

5

Delay (N)

Delay (N)

Delay (N)

Delay (N)

x

y

1 Block FFT Convolver

However, the number of computations 
it costs even using non-trivial solutions 
is massive

up to 1M samples
per convolution channel

Having so many cores in the modern GPU 
we can greatly beat CPUs in terms 
of executing lots of long FIR filters 
at the same time 

+



Example of problematic component: IIR filter

Definitions

Sequence: y[n] = b0 * x[n] + b1 * x[n - 1] + b2 * x[n - 2] - a1 * y[n - 1] - a2 * y[n - 2]

Transfer function:

Fundamental problem: 
Output sequence y can be evaluated only sample 
by sample due to the fact that each output samples depends 
on previous two output samples (feedback) even if part or all 
input signal x is known at the start of the processing

x(n) + y(n)

z1

v(n) a



Solution for sequential components like IIR filter

Using classical audio DSP designs we cannot use GPU efficiently, as, for example, 
our equalizer will be able to use only one thread per audio channel

Find design which is producing the same result has some degree of output dependency freedom

Requirements

Retain original filter numerical stability and SNR

Doesn’t vastly increase number of computations 
that are needed to perform filtering

Doesn’t vastly increase number of computations that 
are needed to recalculate filter parameters when user 
changes those parameters

Universally works for any IIR filter type



Further problem: cascade of IIR filters

Using classical audio DSP designs we cannot use GPU efficiently, as, for example, 
our equalizer will be able to use only one thread per audio channel

Many audio effects are formulated and 
implemented as a sequence of second 
order IIRs, for example equalizer is mostly 
the cascade of such filters, where the count 
of those filters depending on particular 
implementation can vary ~10-30 filters 

In the end we’re getting sequence of filters and each filter internally also can compute output only sequentially

x[n]
b0[0]

b0[1]

b0[2]

-a0[1]

-a0[2]

z-1

z-1

z-1

z-1

z-1

z-1

b1[0]

b1[1]

b1[2]

-a1[1]

-a1[2]

z-1

z-1

z-1

z-1

bN-1[0]

bN-1[1]

bN-1[2]

-aN-1[1]

-aN-1[2]

z-1

z-1

Gain y[n]



Solution for cascades

Develop topology of the audio processor to minimize sequential components, parallelize topology

This is not an easy task as we want to get the same audio output with completely different processor design

filter 1

filter 3

filter 4

filter 2

Input

Output

filter 1

Input

filter 2

Input

filter 3

Input

filter 4

Input

+

Output



Engineering tricks for audio DSP parallelization

In compressor detection line 
we can change attack/release 
state only once 32 samples 
without any significant 
difference in the output

1
Our IIR filter implementation 
can compute two output samples 
at one iteration using 16 parallel 
and independent multiplications

2
Usage of custom derived 
equations in the form 
that greatly improves 
numerical stability 
in some critical places

3



Engineering tricks for audio DSP parallelization

Our equalizer has 
all of its IIR filters 
in parallel composition

Our IIR filter 
implementation can 
compute two output 
samples at one iteration 
using 16 parallel and 
independent multiplications

Our delay lines and circular 
buffers are designed 
in the way that access 
to every sample in it will 
cost exactly the same 
amount of instructions



People spend thousands on external acceleration hardware 

and still face bottlenecking limitations



Pro Audio users want to have unlimited creative power in their DAWs

User’s goals

Run loads of tracks 
with loads of effects

Get 1ms latency

Tr
ac

k 
2

Tr
ac

k 
…

Tr
ac

k 
N

Tr
ac

k 
1

DlayEQ

Comp

Dlay EQ Comp

Dlay Reverb EQComp



Challenge 2: Large number of tracks and effects with different parameters

User’s goals

Run loads of tracks 
with loads of effects

Get 1ms latency

Tr. 1

Tr. 2

Tr. 3

Tr. 4

Tr. 5

Tr. 6

Tr. …

Tr. 1000

The DAW sees each track individually - the GPU must see all of them at once



Challenge 3: Data transfer between CPU and GPU

User’s goals

Run loads of tracks 
with loads of effects

Get 1ms latency

1000 asynchronous data transfers in each direction of 96 samples each just do not work



Meet the GPU Audio Rendering 
Engine powered by Scheduler

Our proprietary algorithm to solve these challenges



Scheduler Technology Overview

Host Scheduler
Multi-threaded lock-free 
low overhead design

Chain Blueprint generation

Communication with the DAW

Data collection and combination

Execution time prediction

Triggering processing on the GPU

Device Scheduler
Dynamic, dependency-aware, priority-based, parallel, 
distributed scheduler, running across kernel launches

Chain blueprint management

Task collection

Execution blocking

Dependency resolution

Dynamic Resource management



Scheduler Blueprints

Repeated processing for increased efficiency

Tr
ac

k 
2

Tr
ac

k 
…

Tr
ac

k 
N

Tr
ac

k 
1

Dlay
32 threads

EQ
64 threads

Comp
64 threads

Dlay
32 threads

EQ
64 threads

Comp
16 threads

Dlay
32 threads

Reverb
256 threads

EQ
64 threads

Comp
16 threads



Scheduler Blueprints

Final blueprint

Parameters Parameters Parameters Parameters

Input/temp 
buffer Temp buffer Output buffer

While the parameters and the buffer setup changes for every launch, the task descriptions remain the same 
every time. That is why we call it blueprints

EQDlay Dlay Dlay Dlay Dlay Dlay Comp Comp Comp Comp Comp Comp RVRB RVRB RVRB RVRB RVRB RVRB EQ



Blueprint generation and instantiation

Blueprints are generated by the host scheduler and instantiated by the device scheduler

Device scheduler

• Receive input data
• Receive parameters
• Copy and instantiate 

Blueprint
• Fill Blueprint with new data
• Kick off processing
• Run task execution

Blueprint copy 
and parameter fill

Temp buffer 
requirements 

Buffer reuse

Max 
parallelism 

Dependencies Compact 
description 
of the 
blueprint 

Host scheduler

• Derive parallelism 
from effects

• Determine parallelism across 
time and tasks

• Setup dependencies
• Determine temporary buffer 

requirements
• Find compact Blueprint 

description



Challenge 1: Parallelism and Heterogeneity 
Solved with Rendering Engine 

powered by Scheduler 



Launch 1 Launch 2 Launch 3 Launch 4 Launch 5 Launch … Launch N

Pulsing Scheduler Design 

Memory transfers are merged for incoming and outgoing data

0 200us 400us 800us 1000us 1200us 1400us

Copy in Copy out



Pulsing Scheduler Design 

Device scheduler in each window

1000us

Bl
oc

k 
…

Resources

Bl
oc

k 
N

Resources

Bl
oc

k 
1

Resources

Launch 5



Challenges 2 and 3: Big number of tracks and effects 

with different parameters and data transfer

Solved with Rendering Engine powered by Scheduler 



GPU Audio DSP SDK

Vast collection of unique 
algorithms which can be used 
to efficiently process sound 
on GPU

Well-known DSP 
processing kernels 
for easy implementation

SDK for both enthusiasts 
and companies to build
their own products
using those algorithms

Multi-layered –
fits any use case



To summarize, the GPU Audio SDK is like an onion

This sets developers up with incredible features, across any platform that uses audio

Low latencyMany layers that can 
be used as desired

High performance DSP



GPU Audio Early Access
Unlock your GPU for 
Lightning Fast Audio Production

Zero latency 
performance

Instantly 
rendered audio

Freedom 
from DSP 
bottlenecks



What’s next?

GPU Audio growing ecosystem

Mid 2022

Beta Suite Release

Feb 2022

Early Access Launch

SDK
XXX

New DAWs
XXX

GPU Audio Spatial Mixing platform
XXX



Join us!

Early Access Download

Early Access –
Convolution Networks 

on GPU

Beta Sign-Up –
Full Plugin Suite

Discord – Join
the Community

SDK Signup –
Developers


